Эксперименты по выявлению распределения воздушных потоков внутри корпуса танка производились при нормально собранном воздушном тракте с учетом различных положений башни и входных люков корпуса и башни (в сочетании с открытыми или закрытыми крышками). Дополнительно состоялись эксперименты по выявлению воздушных потоков при полностью замкнутых воздушных трактах системы охлаждения двигателя. Для этого между радиаторами и входными броневыми решетками установили специальные уплотнения. Кроме того, устранили все неплотности и щели в подвентиляторных и подрадиаторных коробках. Вся картина распределения воздушных потоков внутри корпуса танка определялась с помощью дымления. Выяснилось, что направление воздушных потоков не зависело от частоты вращения коленчатого вала двигателя, а следовательно, и от частоты вращения вентиляторов.
Как показали результаты проведенных исследований, направление воздушных потоков в моторном и трансмиссионном отделениях зависело только от положения башни, а также крышек входных люков башни и механика-водителя (открыты или закрыты), жалюзи и башенного вентилятора (включен или выключен и закрыт крышкой).
При нормально собранных воздушных трактах системы охлаждения воздухоочистители питались воздухом, поступавшим, в основном, из передних входных броневых решеток (тем самым уменьшая расход воздуха через передние радиаторы и увеличивая неравномерность скоростей потока воздуха перед фронтом радиаторов), а также через окна и щели в моторной перегородке, несколько нагретым по пути о горячие коллекторы передних радиаторов и корпус нагнетателя. Однако нагрев воздуха был незначителен, так как нижние коллекторы передних радиаторов, обдуваемые этим воздухом, нагревали его мало.
К передним радиатором воздух, как правило, поступал через передние входные броневые решетки, а также через некоторые щели и окна в моторной перегородке и через щель надмоторного люка. К задним радиаторам воздух, в основном, поступал через задние входные броневые решетки, щель трансмиссионного люка и заднюю часть щели надмоторного люка. В радиаторы из моторного отделения воздух поступал предварительно нагретым о горячие детали двигателя и планетарной трансмиссии, что снижало теплопередачу радиаторов.
Вентиляторы системы охлаждения засасывали воздух через радиаторы, а также через неплотности и щели в подвентиляторных и подрадиаторных коробках. Воздух перед входом в вентиляторы по пути обдувал выпускные патрубки, уложенные в подрадиаторных коробках, отчего дополнительно нагревался, и объемный расход воздуха через вентиляторы снижался.
При дополнительных уплотнениях воздушных трактов системы охлаждения соблюдалась их строгая изоляция как от проникновения нагретого воздуха из моторного отделения к радиаторам и вентиляторам, так и от попадания воздуха из передних входных решеток к воздухоочистителям. При этом воздух к воздухоочистителям подавался только из боевого и моторного отделений (воздух, проходивший через щели моторного и трансмиссионного люков). Нагрев этого воздуха увеличивался за счет предварительного обдува им горячего двигателя и планетарной трансмиссии.
Воздух, проходивший через передние и задние входные решетки, поступал только в радиаторы, благодаря чему улучшались поля скоростей потока воздуха перед фронтом радиаторов, а также их обдув.
Вентиляция боевого отделения оказалась неудовлетворительной. Воздух в боевое отделение поступал через отверстия и щели в маске и опору башни, а также через щели люков и смотровых приборов. Работающий вентилятор башни выбрасывал часть воздуха, поступавшего в боевое отделение, и разделение воздушных потоков, поступавших к вентилятору и моторной перегородке (где образовывалась застойная зона), происходило примерно на уровне плеч заряжающего и наводчика (при их сидячем положении), что вынуждало их дышать воздухом, насыщенным пороховыми газами. При значительной концентрации дыма внутри боевого отделения для его удаления требовался большой промежуток времени из-за неудачного выбора направления тяги вытяжного вентилятора башни.
Кроме того, наблюдалась сильная запыленность боевого отделения из-за создаваемого в нем разряжения при движении танка по пыльной дороге. Разряжение в боевом отделении создавалось тягой воздухоочистителей и дополнительно увеличивалось при включении вытяжного вентилятора башни. Однако величина создаваемого разряжения не могла служить причиной сильного запыления боевого отделения машины. Как показали испытания, причинами сильного запыления боевого отделения являлись:
- неудачная конструкция надгусеничных полок, в результате чего пыль не отбивалась от корпуса танка, а могла подниматься к верхней части корпуса, как с бортов, так и спереди и особенно сзади машины. В результате пыль засасывалась во входные решетки воздушного тракта системы охлаждения двигателя, а также внутрь корпуса через опору башни, щели люков и другие неплотности;
- бортовое расположение и неправильная конструкция выходов, приводившая к образованию за башней и ее кормовой частью вихревой зоны, содержавшей большое количество пыли, поступавшей затем вместе с воздухом в боевое отделение через щели маски пушки и люков башни.
Таким образом, основными причинами запыленности боевого отделения являлись конструктивные особенности ИС-4. Пылевая зона вокруг башен танков Т-44 и Т-54 почти отсутствовала и сильного запыления боевых отделений не происходило.
Бороться с запылением боевого отделения танка ИС-4 при существующей конструкции можно было снижением разряжения в боевом отделении за счет изоляции воздушных трактов и герметизации моторной перегородки.
Водяной тракт системы охлаждения двигателя ИС-4 имел два контура циркуляции:
- водяной насос — рубашки двигателя — левая группа воздушно-масляных радиаторов — водяной насос;
- водяной насос — рубашки двигателя — правый воздушно-водяной радиатор — водомасляный радиатор системы смазки и охлаждения планетарной трансмиссии — водяной насос.
Все воздушно-водяные радиаторы имели одинаковую конструкцию, но их включение в систему охлаждение было различным. В задний правый и передний левый радиаторы вода подводилась к последним ходам радиаторов через трубки в верхних коллекторах, а отводилась непосредственно из переднего отсека нижнего коллектора. В передний левый радиатор вода поступала непосредственно через отсек коллектора, а отводилась через трубку в нижнем коллекторе. Как показали испытания, водяной тракт системы охлаждения характеризовался следующими недостатками:
- сопротивление водяных трубопроводов более чем вдвое превышало сопротивление радиаторов и рубашек двигателя вместе взятых;
- водяной насос при температуре охлаждающей жидкости (воды) на выходе из блоков +100°С работал с кавитацией, что отражалось на его производительности, которая снижалась на 9,4% для систем охлаждения танков ИС-4 выпуска 1948 и 1949 гг.;
- в горных условиях при большой нагрузке и высокой температуре окружающего воздуха система охлаждения не могла нормально функционировать при высокой температуре охлаждающей жидкости (воды) из-за большой кавитации насоса;
- неравномерное распределение расхода воды между задним левым воздушно-водяным радиатором и двумя другими (расход воды через задний левый радиатор был на 130% меньше, чем через передний левый и задний правый радиаторы), что снижало теплоотдачу этого радиатора на 5%.
В ходе исследования прокачки масла в системе смазки и охлаждения планетарной трансмиссии обнаружилось, что прокачка масла через данную систему зависела от передачи трехскоростного редуктора и максимальная прокачка, равная 0,57 л/с, достигалась на третьей и шестой передачах при частоте вращения коленчатого вала двигателя 2200 мин-1.
Производительность масляного насоса планетарной трансмиссии составляла 35% от производительности, указанной заводом.
Схема воздушных потоков в башне танка ИС-4.