Оглавление

DeShwPz141.jpg

DeShwPz144.jpg DeShwPz145.jpg

Ходовая часть танка «Мышь»

Соединение траков осуществлялось пальцами, которые удерживались от осевого смещения пружинными кольцами. Отлитые из марганцовистой стали траки были подвергнуты термической обработке — закалке и отпуску. Палец трака изготавливался из катаной среднеуглеродистой стали с последующей поверхностной закалкой токами высокой частоты. Масса цельного и составного трака с пальцем составляла 127,7 кг, общая масса гусениц танка — 14302 кг.

Зацепление с ведущими колесами — цевочное. Ведущие колеса монтировались между двумя ступенями планетарного бортового редуктора. Корпус ведущего колеса состоял из двух половин, соединенных между собой четырьмя болтами. Такая конструкция существенно облегчала монтаж ведущего колеса. Съемные зубчатые венцы крепились к фланцам корпуса ведущего колеса болтами. Каждый венец имел по 17 зубьев. Уплотнение корпуса ведущего колеса осуществлялось двумя лабиринтными войлочными сальниками.

Корпус направляющего колеса представлял собой полую фасонную отливку, выполненную за одно целое с двумя ободами. На концах оси направляющего колеса были срезаны плоскости и выполнены сквозные радиальные сверления с полукруглой нарезкой, в которую вворачивались винты механизма натяжения. При вращении винтов плоскости оси перемещались в направляющих бортового листа корпуса и фальшборта, благодаря чему происходило натяжение гусеницы.

Следует отметить, что отсутствие кривошипного механизма значительно упростило конструкцию направляющего колеса. В то же время масса направляющего колеса в сборе с механизмом натяжения гусеницы составляла 1750 кг, что усложняло монтажно-демонтажные работы при их замене или ремонте.

Подрессоривание корпуса танка осуществлялось при помощи 24 тележек одинаковой конструкции, размещенных в два ряда по его бортам.

Тележки обоих рядов попарно крепились к одному (общему для них) литому кронштейну, который фиксировался с одной стороны к бортовому листу корпуса, а с другой — к фальшборту.

Двухрядное расположение тележек было обусловлено стремлением увеличить число опорных катков и тем самым уменьшить нагрузку на них. Упругими элементами каждой тележки являлись коническая буферная пружина прямоугольного сечения и резиновая подушка.

Принципиальная схема и конструкция отдельных узлов ходовой части также были частично заимствованы у САУ «Фердинанд». Как уже говорилось, в Германии при проектировании Тур 205 были вынуждены отказаться от торсионной подвески, применявшейся на всех других типах тяжелых танков. Документы свидетельствуют о том, что на заводах при сборке танков испытывали значительные трудности с торсионными подвесками, так как их применение требовало большого числа отверстий в корпусе танка. Эти сложности особенно усугубились после того, как бомбардировочная авиация союзников вывела из строя специальный завод по обработке корпусов танков. В связи с этим немцы начиная с 1943 г. проводили проектирование и испытания других типов подвесок, в частности, подвесок с буферными пружинами и листовыми рессорами. Несмотря на то, что при испытаниях подвески танка «Мышь» были получены более низкие результаты, чем у торсионных подвесок других тяжелых танков, в качестве упругих элементов все же остановились на буферных пружинах.

DeShwPz142.jpg DeShwPz143.jpg DeShwPz146.jpg

Опорная тележка ходовой части танка.

Детали планетарного редуктора. На фото справа: детали планетарных передач уложены в том порядке, как они устанавливаются на танке: левый (первый) планетарный редуктор, ведущее колесо, правый (второй) планетарный редуктор.
 

Каждая тележка имела два опорных катка, соединенных между собой нижним балансиром. Конструкция опорных катков была одинакова. Крепление опорного катка на ступице с помощью шпонки и гайки, помимо простоты конструкции, обеспечивало легкость монтажно-демонтажных работ. Внутренняя амортизация опорного катка обеспечивалась двумя резиновыми кольцами, зажатыми между литым ободом Т-образного сечения, и двумя стальными дисками. Масса каждого катка составляла 110 кг.

При наезде на препятствие обод катка перемещался вверх, вызывая деформацию резиновых колец и гася тем самым колебания, идущие на корпус. Резина в данном случае работала на сдвиг. Применение внутренней амортизации опорных катков для 180-т тихоходной машины явилось рациональным решением, так как наружные шины в условиях больших удельных давлений не обеспечивали их надежной работы. Использование катков малого диаметра позволило установить большое число тележек, однако это повлекло за собой перенапряжение резиновых колец опорных катков. Тем не менее, внутренняя амортизация опорных катков (при небольшом их диаметре) обеспечила меньшее напряжение в резине по сравнению с наружными шинами и значительную экономию дефицитной резины.

 

Оглавление