Оглавление

Использование крыла большей площади положительно отразилось на управляемости самолета в области малых скоростей, посадочная скорость снизилась на 18 км/ч. А еще крыло большей площади в сочетании с усиленной конструкцией планера и шасси позволило устранить наиболее часто критикуемый недостаток исходного самолета - малую максимальную посадочную массу. Максимальная масса полезной нагрузки, с которой допускалась посадка на авианосец самолета F/A-18C, составляет 2495 кг, для F/A-18E этот параметр равен 4490 кг, для F/A-18F - 4080 кг.

Очевидное внешнее сходство провоцирует обманчивое представление о том, что «Супер Хорнет» представляет собой масштабно увеличенный F/A-18C/D. Однако согласно заявлениям представителей фирмы «Боинг» (фирма «Боинг» поглотила фирму «МакДоннелл-Дуглас», выпускавшей F/A-18), конструкция «Супер Хорнета» обновлена на 90%. Планер радикально перепроектирован с целью снижения его массы. Объем использования композиционных материалов возрос вдвое: конструкции из композитов составляют 22% массы планера, причем применяется более жесткий и прочный материал. Применение алюминиевых сплавов снизилось с 50% в конструкции F/A-18C/ D до 29% у F/A-18E/F. Из алюминия изготовлены носовая часть фюзеляжа, наплывы крыла и элероны; из КМ - центральная и хвостовая части фюзеляжа, кили, крылья и стабилизаторы. Силовой шпангоут с узлами крепления плоскостей крыла на F/A-18C/D изготавливался из алюминиевого сплава. По опыту эксплуатации самолетов этих модификаций прочность узлов крепления была признана недостаточной. На F/A-18E/F шпангоут выполнен из титана. Недостаточной также была признана и прочность опор шасси "Хорнета". На "Супер Хорнете" стойки опор выполнены из стального сплава Аэрмет-100 вместо сплава 300М. Сплав Аэрмет 100 имеет большую прочность и впервые используется в авиационных конструкциях.

FA18EF005.jpg

Воздухозаборник F/A- 18E

FA18EF006.jpg FA18EF007.jpg

Сборка первого опытного F-18E

Двигатель Дженерал Электрик F414

На F/A-18E/F удалось резко уменьшить количество сборочных единиц, сократить время и стоимость обработки и сборки отдельных агрегатов и планера в целом за счет применения крупномерных деталей. Конструкция F/A-18C/D состоит из 14100 узлов, а конструкция F/A-E/F — только из 8100. К примеру, силовой шпангоут носовой части фюзеляжа сделан моноблочным вместо сборного, состоящего из 90 деталей, применяемого на F/A-18C/D.

Втрое уменьшено количество деталей в конструкции наплывов крыла. Крыло имеет на один лонжерон меньше. Меньше стало и нервюр.

При заданной по спецификации массе пустого самолета, предъявляемого к летным испытаниям в 13860 кг, первый опытный F/A-18E имел фактическую массу на 450 кг меньшую - достаточно редкий случай в истории авиации.

Повышение выживаемости стояло в числе приоритетов при разработке «Супер Хорнета» на третьем месте. Аналитики считают, что живучесть F/A-18E/F удалось повысить по сравнению с «Хорнет» в пять раз. «Супер Хорнет» не является самолетом «стеле», но его ЭПР существенно ниже, чем у истребителей 4-го поколения. В конструкции планера использованы элементы технологии «стелс». Масса элементов, изготовленных из радиопоглощающих материалов, составляет 70 кг. РПМ использованы, главным образом, при изготовлении передних кромок крыла, килей и стабилизатора, из них изготовлены обтекатели приводов элеронов и шарнира посадочного гака. Снижению ЭПР также способствуют зигзагообразные передние и задние кромки створок ниш основных опор шасси и уменьшение зазоров между панелями обшивки и лючками. С оглядкой на технологию «стеле» выполнены воздухозаборники двигателей. Им придано ромбоидальное сечение, как у воздухозаборников истребителя F-22. Каналы подвода воздуха к двигателям слегка искривлены в двух плоскостях и частично экранируют компрессоры двигателей; в каналах перед лопатками компрессоров установлены радиальные пластины, рассеивающие электромагнитное излучение, отраженное лопатками компрессора.. В результате этих усовершенствований ЭПР "Супер Хорнета" даже уменьшилась по сравнению с F/A-18C/D, хотя размеры планера значительно возросли.

Оглавление