Оглавление

SupHelm002.jpg

Рисунок 1. Схема процесса глубокой вытяжки-штамповки пластичным металлом в жесткую матрицу.
1 — матрица; 2 — контейнер; 3 — пластичный металл; 4 — плоская заготовка.

Самый тяжелый из указанных отечественных бронешлемов — «Маска» 2-го класса с цельноштампованным корпусом (колпаком), выпускавшийся НИИ спецтехники и связи МВД. Снизить его массу невозможно даже при использовании самых высокопрочных сталей, так как технологические ограничения при штамповке корпусов не позволяют получить стальной бронешлем толщиной менее 1,8 мм. Кроме того, «Маска», как и все стальные тонкобронные структуры, имеет небольшую противоосколочную стойкость.

Замена стали на легкие сплавы в бронепреградах при сохранении их массы приводит к увеличению толщины бронепреграды. Соответственно, растет величина такой важной броневой характеристики, как отношение толщины преграды к калибру средства поражения (b/d). При этом характер разрушения бронепреграды в месте поражения меняется с «пролома» на «прокол» или «срез пробки», что приводит к большей энергоемкости преграды из-за возрастания деформированного объема металла и, в результате, к более высокой стойкости.

Первым российским опытом в использовании легких сплавов был известный шлем «Сфера» (СТШ-81), который до сих пор состоит на снабжении спецподразделений правоохранительных органов. Этот шлем, разработанный ОАО «НИИ Стали» еще в начале 1990-х гг., представляет собой пять штампованных деталей сложной формы из титанового сплава ОТ4-1, расположенных в тканевом чехле. Он обеспечивает защиту на уровне 1-го класса по ГОСТ Р 50744-95 и от пули пистолета ТТ с дистанции 50 м. Преимущество «Сферы» — технологическая простота изготовления, недостаток — возможность «подныривания» пули в зазор между деталями, что существенно снижает защитные свойства шлема по сравнению с цельнотянутым вариантом корпуса.

Комбинированные бронешлемы

Исследования «НИИ Стали» показали, что чисто металлические преграды, даже с применением легких сплавов, для бронешлема не дают большого эффекта, поэтому было разработано альтернативное решение с применением комбинированных преград. Корпус комбинированного бронешлема сочетает в себе лицевой слой из легких сплавов с тыльным слоем из различных арамидных тканей с полимерными прослойками или из полиэтиленовых материалов. Толщина металлической оболочки выбирается с учетом обеспечения жесткости и максимальной энергоемкости корпуса бронешлема, разрушающего и деформирующего пулю. Роль полимерного подпора, реализующего преимущества высокомодульных материалов, при этом сводится к полному задержанию образовавшихся элементов демонтажа пули.

На практике получить цельноштампованную оболочку шлема из высокопрочного титанового сплава оказалось далеко не простым делом. При штамповке в затылочной части заготовки образовывалось недопустимое утонение, значительная доля заготовок уходила в брак из-за разрывов листа. «НИИ Стали» совместно с Национальным институтом авиационных технологий (НИАТ) впервые разработана технология изготовления цельнотянутого металлического корпуса шлема глубокой вытяжкой-штамповкой пластичным металлом в жесткую матрицу. Схема процесса представлена на рис. 1.

Сущность этого технологического процесса состоит в том, что плоская заготовка (4) укладывается на поверхность матрицы (1) и прижимается пластичным металлом (3), который залит в контейнер (2). Контейнер с пластичным металлом прикреплен к ползуну пресса. При рабочем ходе пластичный металл прижимает заготовку к поверхности матрицы и сворачивает ее в полость матрицы.

Разработанный способ холодной листовой штамповки-вытяжки пластичным металлом имеет большие технологические возможности по сравнению с существующими процессами штамповки и обеспечивает:
- возможность работы с различными металлическими материалами (стали, титановые и алюминиевые сплавы) различных толщин;
- изменение исходной толщины материала при вытяжке этим способом составляет не более 5-8%;
- создание условий для получения больших коэффициентов вытяжки за один проход;
- предотвращение складкообразования. 

Данный метод позволил сократить сроки подготовки производства шлемов и снизить трудоемкость изготовления изделий, стоимость штамповой оснастки, затраты на основной металл, что очень важно при серийном производстве. Только такой способ изготовления позволяет получать металлические оболочки с максимально равномерной толщиной стенки (с минимальными утонениями). Это обеспечивает равномерные защитные свойства по всей поверхности шлема.

Разработанная специалистами «НИИ Стали» комбинированная структура шлема не имеет зарубежных аналогов. Технология его изготовления включает в себя штамповку корпуса из легких сплавов, штамповку подпора из арамидных тканей и окончательную сборку. Впервые она была применена при изготовлении бронешлемов «Алтын» с титановым корпусом, стоящих на снабжении КГБ (ФСБ) с 1980-х гг. В настоящее время институтом разработан ряд модификаций комбинированных шлемов для различных сфер применения (общевойсковые 6Б6 и 6Б14, полицейский К6-ЗМ, для спецподразделений 6Б6-3, саперный К6-4, со встроенной гарнитурой для носимой радиостанции «Рысь-Т»).

Серийный комбинированный шлем для спецподразделений 6Б6-3 состоит из цельнотянутой титановой оболочки, тканево-полимерного подпора и подтулейного устройства в сборе. Для защиты лица бойца от пулевого обстрела из пистолета ПМ шлем оснащен откидным титановым забралом с бронестеклом в алюминиевой рамке.

Оптимизированная форма БШ обеспечивает необходимый регламентированный зазор между его внутренней поверхностью и головой человека. Это способствует достижению минимального допустимого уровня запреградного воздействия на голову, а также естественной вентиляции подшлемного пространства. Специальное подтулейное устройство обеспечивает надежную фиксацию шлема на голове. Он удобно и быстро снимается и надевается. Подтулейное устройство после повреждения легко заменить на новое без использования специальных приспособлений. Боец может самостоятельно подогнать его по размеру. Шлем хорошо сочетается со штатными средствами связи (их можно разместить прямо на корпусе), наблюдения и прицеливания. Масса такого бронешлема в сборе (без забрала) составляет 2,5±0,25 кг.

Комбинированный титановый шлем имеет противоосколочную стойкость, определяемую как скорость 50% непробития V50 не менее 800 м/с. Стойкость корпуса по ГОСТ Р 50744-95 — по 2-му классу, причем гарантируется сохранение его защитных свойств при температуре от -40°С до +40"С.

SupHelm003.jpg

Шлем «Рысь-Т» с кварцевым бронестеклом после испытания путей Пст (ТТ) с 5 м.

Оглавление