Оглавление

ASAT006.jpg

Вторая ступень ракеты ASAT.

В свою очередь, вторая ступень ракеты была спроектирована фирмой LTV на основе РДТТ «Altair-3» (FW-4S фирмы Thiocol), развивавшего в течение 27 с среднюю тягу 27,4 кН. Исходный вариант этого двигателя имел диаметр 0,5 м, массу около 300 кг и являлся четвертой ступенью легкой ракеты-носителя «Scout». В этом случае переделки оказались более значительными, поскольку в исходном варианте стабилизация ступени «Scout» осуществлялась за счет вращения с угловой скоростью около 3 об./с Для применения в составе ASAT «Altair-З» оснастили реактивной системой управления по трем осям, созданной на основе ЖРД, работающих на гидразине. Конструкцию «Altair-З» в составе ASAT также усилили, чтобы позволить ему выдержать полет в горизонтальном положении самолета-носителя в течение часа перед возможным запуском.

В итоге, расчетная стартовая масса ракеты составила 1194 кг, а длина — 5,4 м. При этом первая ступень ракеты могла выводить ее на высоту 160 км, а вторая — выводить полезную нагрузку на высоту 460 км и более.

В качестве «полезной нагрузки» ракеты предназначалась боевая ступень MHV (Miniature Homing Vehicle — миниатюрный аппарат прямого попадания), которая по компоновке и конструкции была аналогична HIT, но имела большие размеры (диаметр — 0,305 м, длина — 0,51 м) и массу в снаряженном виде (около 16 кг). Макет этой боевой ступени был впервые продемонстрирован в марте 1979 г. на заседании сенатского подкомитета по военным ассигнованиям.

В разработке отдельных элементов MHV вместе с LTV участвовали фирмы Hughes (оптические датчики подсистемы наведения), Zinger Kirfot (подсистема наведения) и Harris (бортовые вычислительные средства). В состав MHV также входили сложенный Грегорианский телескоп, сосуд Дюара с жидким гелием для охлаждения ГСН, приемоответчик С-диапазона, лазерный кольцевой гироскоп фирмы Honeywell для определения скорости вращения аппарата, двигательная установка маневрирования и ориентации. Все подсистемы были выполнены предельно легкими и миниатюрными. Так, БЦВМ, обладавшая быстродействием 24 кбит/с, весила всего 0,36 кг.

ASAT007.jpg ASAT008.jpg ASAT009.jpg

Сборка ИК-датчика боевой ступени MHV.

Компоновка боевой ступени MHV.

Подготовка к испытанию двигательной установки боевой ступени.

Боевая ступень MHVустанавливалась в составе ракеты на опорном устройстве, обеспечивающем перед отделением приведение ее во вращение со скоростью до 30—33 об./с для стабилизации и наведения на цель. Основу ИК-датчика MHV составляли «линейки», изготовленные на основе висмута индия, охлаждавшегося перед началом работы до 4 К. Этот датчик, изготовленный фирмой Hughes, включал в себя четыре линейки, располагавшиеся в виде квадрата, и четыре линейки—в виде спиральных кривых. С их помощью можно было определять относительное местоположение перехватываемого спутника по измерениям времени пересечения линеек его образом. В то же время MHV не располагала какой-либо информацией о своем местоположении, о скорости своего движения и расстоянии до цели. Логика работы и наведения на цель MHV заключалась в сведении к нулю любых изменений ее линии визирования на цель путем включения двигателей управления, и это должно было происходить даже в том случае, если бы боевая ступень удалялась от атакуемой цели. Естественно, что при использовании подобной схемы наведения даже незначительная ошибка в координатах и времени запуска ракеты делала перехват невозможным.

В качестве исполнительных органов системы управления были использованы микро-РДТТ управления и ориентации, созданные фирмой Atlantic Research. Каждый двигатель управления состоял из двух заполненных топливом тонкостенных цилиндрических трубок общей длиной 0,508 м и диаметром 12,7 мм, а также расположенного между ними сопла. Время работы каждого из этих двигателей составляло порядка 0,01 с, при этом развиваемое давление достигало 70 мПа.

Создание этих двигателей оказалось достаточно сложной задачей, поскольку их разработчикам наряду с традиционными проблемами потребовалось найти решение проблемы минимизации ИК-загрязнений, возникающих при их работе. Это было связано с высокой чувствительностью ИК-датчика, установленного на MHV, который мог реагировать на оказывавшиеся в его поле зрения микроскопические частицы догоравшего твердого топлива. Решение этой проблемы было найдено благодаря разработке специального быстрогорящего топлива.

Всего в состав MHV входило 64 микро-РДТТ управления: 56 из них были снаряжены полностью, а восемь — наполовину, для использования в соответствии с требованиями системы наведения на завершающем этапе перехвата.

Четыре блока двигателей ориентации, каждый из которых представлял собой миниатюрную петарду, располагались в задней части MHV. Они предназначались для управления или демпфирования его колебаний и могли включаться при обнаружении колебаний или же в соответствии с логикой работы системы управления.

В процессе стендовой отработки MHV прошла вибрационные испытания. Они подтвердили способность выдерживать нагрузки, которым она будет подвергаться в составе самолета-носителя. Также были проведены испытания по точному отделению MHV из опорного и раскручивающего устройства ракеты.

В последующей отработке MHV был выполнен этап летно-стендовых испытаний на специально построенном фирмой LTV наземном комплексе. Здесь, находясь в состоянии свободного падения, макетные и штатные образцы MHV выполняли отслеживание перемещения и наведение на модели спутников. По заявлениям представителей ВВС США, в процессе этих испытаний не наблюдалось серьезных технических проблем — была отмечена лишь необходимость внесения незначительных изменений в ГСН MHV, увеличения мощности ЭВМ, повышение прочности конструкции и пр.

В целом, проведенные в 1980—1981 гг. испытания подтвердили способность MHV наводиться на спутники и выводить их из строя при соударении на большой скорости.

Наряду с работами по созданию запускаемой с самолета противоспутниковой ракеты изучались и перспективные варианты использования ее элементов. Так, например, предусматривалось использование MHV, размещаемых на спутнике или на сопровождающем его космическом аппарате, для поражения атакующих противоспутниковых ракет («программа 2136»).

Оглавление